The Future of Trusted Computing

Steve Hanna
Co-Chair, Embedded Systems Work Group, TCG
Senior Principal, Infineon Technologies
Agenda

• TCG Vision
• Today’s Reality
• Securing IoT and Cloud
• Conclusion
• Questions and Discussion
TCG VISION
“TCG Enabled” internationally standardized technology is **globally accepted and expected as the foundation for trust** in systems ranging from the most complex large-scale computing platforms to small scale dedicated devices, from traditional IT to the factory floor to the myriad devices which enrich our daily lives.
“TCG-Enabled” Technology

- TPM (Trusted Platform Module)
- DICE (Device Identifier Composition Engine)
- SED (Self-Encrypting Drives)
- TNC (Trusted Network Communications)
SED Overview

1. Initial Boot
2. Pre-Boot OS
3. User Authentication
4. Boot into Normal OS
5. Normal operation, with inline hardware encryption
TNC Overview
TODAY’S REALITY
Global Internet Device Installed Base Forecast

BI INTELLIGENCE

Source: Gartner, IDC, Strategy Analytics, Machina Research, company filings, BII estimates
TEE – Trusted Execution Environment

Graphics Source: UL; White paper - HCE security implications, analyzing the security aspects of HCE (Jan 8, 2014)
IoT Attacks Growing
SECURING IOT AND CLOUD
"A world where physical objects are seamlessly integrated into the information network."
Why IoT?

Automotive | Smart Home | Industrial | ICT

1. New capabilities and services
2. Greater efficiency
3. Increased flexibility and customization
IoT Affects Everything

<table>
<thead>
<tr>
<th>Smart Vehicles</th>
<th>Smart Cities & Energy</th>
<th>Smart Industry & Business</th>
<th>Smart Home & Consumer Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Cars</td>
<td>Energy</td>
<td>Factory Automation</td>
<td>Smart Home</td>
</tr>
<tr>
<td>Commercial, Agriculture & Construction Vehicles incl. Trucks & Buses</td>
<td>Building Automation</td>
<td>Medical Equipment</td>
<td>Smartphones, Tablets & PCs</td>
</tr>
<tr>
<td>Low speed vehicles</td>
<td>Professional Lighting</td>
<td></td>
<td>Consumer Electronics & Wearables</td>
</tr>
<tr>
<td>Other Transport</td>
<td>Infrastructure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smart ICT

- Communication Networks
- Data Center / Cloud

©2018 Trusted Computing Group
IoT Architecture

- Gather data
- Analyze
- Send commands

- Reliably convey data and commands

- Send and receive data and commands
Each layer can be attacked

Security threats for IoT

An **Eavesdropper** listening in on data or commands can reveal confidential information about the operation of the infrastructure.

A **Bad Server** sending incorrect commands can be used to trigger unplanned events, to send some physical resource (water, oil, electricity, etc.) to an unplanned destination, and so forth.

A **Bad Device** injecting fake measurements can disrupt the control processes and cause them to react inappropriately or dangerously, or can be used to mask physical attacks.
Top challenges for IoT adopters

1. Cybersecurity
2. Integration
3. Managing business requirements

Source: Gartner survey results, March 3, 2016
http://www.gartner.com/newsroom/id/3236718
TCG Work on Securing IoT

• Published
 – TCG Guidance for Securing IoT
 – Automotive-Thin Profile for TPM
 – DICE Architectures

• In Progress
 – TCG Guidance for Securing Industrial Systems
 – Cyber Resilient Technologies
TCG Guidance for Securing IoT
Automotive-Thin Profile for TPM

More resources, Auto-Rich

Limited resources Auto-Thin

Head Unit / Gateway

Applications

OS

1~2 core

RAM

HW

Others

ECU

Application

1 core

RAM

HW

Others

TPM

Head Unit / Gateway

Applications

OS

4 Core <

RAM

HW

Others

TPM

ECU

Application

1 core

RAM

HW

Others

TPM

More resources, Auto-Rich

Limited resources Auto-Thin

©2018 Trusted Computing Group
DICE Architectures

- Power On
- DICE Engine: Unique Device Secret
- Layer 0: Secret 0
- Layer 1: Secret 1
- Layer n: Secret n
- Layer 1’: Secret 1’
- Layer n’: Secret n’
Work in Progress

TCG Guidance for Securing Industrial Systems

Cyber Resilient Technologies

- **Protect** updatable persistent code and configuration data
- **Detect** when vulnerabilities are not patched or when corruption has occurred
- **Recover** reliably to a known good state even if the platform is compromised
TCG Work on Securing Cloud

• Published
 – Trusted Multi-Tenant Infrastructure Trust Assessment Framework
 – Trusted Multi-Tenant Infrastructure Use Cases
 – Trusted Multi-Tenant Infrastructure Reference Framework
Trusted Multi-Tenant Infrastructure
What Lies Ahead?

• New applications for Trusted Computing

• New challenges and threats

• New ideas for addressing those threats
QUESTIONS AND DISCUSSION